
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master's Thesis

Client-server Communication Protocol for CellStore
Database Engine

Klient-server komunika£ní protokol pro databázový stroj
CellStore

Bc. Martin Plicka

Supervisor: Ing. Jan Vraný

Study Programme: Electrical Engineering and Information Technology

Field of Study: Computer Science and Engineering

May 3, 2009

iv

v

Aknowledgements

Fenk juu all

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed
all the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon
£. 121/2000Sb. (copyright law), and with the rights connected with the copyright
act including the changes in the act.

Prague, May 3, 2009 .

viii

Abstract

The aim of this work is to describe whole process leading to design and implementation
of client-server protocol for CellStore database engine. It contains discussion about se-
lection of communication mechanism and data representation. Is also describes features
and common guidelines of API which was being created. All source code of both client
and server part, including API documentation, are appended on CD. In appendix, there
is also exhausting instruction for running CellStore database with remote access ability
and compiling client library and client programs.

Abstrakt

Cílem této práce je popsat celý proces návrhu a implementace klient-server protokolu
pro databázový stroj CellStore. Obsahuje diskusi výb¥ru komunika£ního mechanismu a
reprezentace dat. Dále uvádí a popisuje vlastnosti a spole£ná pravidla vytvá°eného API
celé klientské knihovny. Na p°iloºeném CD jsou mimo jiné umíst¥ny ve²keré zdrojové
kódy jak klientské tak serverové strany v£etn¥ dokumentace API. V p°íloze jsou také
uvedeny informace pro zprovozn¥ní databáze CellStore, v£etn¥ sluºby pro vzdálený
p°ístup, a informace pro kompilaci klientské knihovny a na ní zaloºených program·.

ix

x

Contents

1 Introduction 1

2 Analysis 3
2.1 CellStore description . 3

2.1.1 XMLDB interface . 3
2.1.2 DOM interface . 3
2.1.3 SELF interface . 4

2.2 Existing object & XML database engines and their interfaces 4
2.2.1 eXist . 4
2.2.2 GemStone/S - GemBuilder for C 4

2.3 Choosing the network data representation 4
2.3.1 Text-based protocol and data representation 5
2.3.2 Binary protocol . 5
2.3.3 Remote Procedure Call . 5
2.3.4 Conclusion . 6

3 RPC programming in C and Smalltalk/X 9
3.1 XDR description . 9
3.2 RPC in C - rpcgen . 10

3.2.1 Server . 11
3.2.2 Client . 11
3.2.3 Building and running . 11

3.3 RPC in Smalltalk/X . 13
3.3.1 Server . 14
3.3.2 Client . 15
3.3.3 Various Smalltalk/X RPC patches 16

3.4 Other languages . 17

4 Protocol 19
4.1 Mapping object world to non-objected language 19

4.1.1 Handling the objects remotely . 19
4.1.2 Exceptions . 20

4.2 Message & control �ow . 20
4.2.1 Single-call operations . 22
4.2.2 Multi-call operations . 22

4.3 Large �le transfer . 22
4.3.1 Data transfer . 23

xi

xii CONTENTS

5 Realization 27
5.1 Server side - Smalltalk/X . 27

5.1.1 Multi-threaded RPC server - RPCMTServer class 27
5.1.2 Server core - RemoteServer class 28
5.1.3 Session object holder - SessionStorage class 31
5.1.4 EnhancedSessionStorage class . 31
5.1.5 Large �les transfer - SocketJob class 32
5.1.6 Special read stream - NetReadStream class 34
5.1.7 Example - XML import . 35
5.1.8 CellStore service - RPCService class 35
5.1.9 Remote server launcher - RemoteServerWizard class 36

5.2 Client side - C library . 36
5.2.1 API guidelines . 37
5.2.2 Library structure . 37

5.3 Sample Smalltalk/X client . 38

6 Testing 41
6.1 Unit testing tools . 41

6.1.1 Smalltalk/X - SUnit . 41
6.1.2 C Language - Check library . 41

6.2 Test coverage . 42
6.2.1 Server side - Smalltalk/X . 42
6.2.2 Client side - Check . 42

6.3 Performance measures . 42

7 Conclusion 43

Bibliography 45

A List of used abbreviations 47

B Installation instructions 49
B.1 CellStore installing . 49
B.2 Client library compiling . 50
B.3 Demo applications . 51

C How to implement protocol 53

D CD content 55

List of Figures

2.1 CellStore architecture [1] . 7

3.1 Sample C server procedure . 11
3.2 Sample C client code . 12

4.1 Sample reply de�nition . 20
4.2 Remote access protocol, capitalized labels represent RPC messages . . . 21
4.3 File upload protocol in detail . 25

5.1 Brief capture of client-server implementation architecture 28
5.2 Server - basic structure . 29
5.3 Code of RPC operation with standard reply behavior 30
5.4 Code of RPC operation after enhancement 30
5.5 SocketJob hierarchy . 33
5.6 Structure of the sample Smalltalk/X client 39

6.1 Smalltalk/X SUnit tool . 42

B.1 Demo applications: sample output . 52

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

CellStore [1] is a native XML database engine which was born at Department of Com-
puter Science & Engineering at Czech Technical University in Prague, Faculty of Elec-
trical Engineering. It's being developed both for educational and research purposes.
It's entirely written in Smalltalk on Smalltalk/X platform running either on Windows
or Linux systems.

Currently, it works as an embedded database so it can be run as local library
only. But this is not enough or real application deployment or development. For these
purposes we want to develop client-server based protocol to enable remote access to
various CellStore database interfaces.

CellStore is formerly XML database but since new object interface was developed,
database can handle any object data. Protocol should re�ect that and be able, be-
yond the former XML database access, work with arbitrary objects (in some kind as
Gemstone/S does).

(TODO: some information about target library - C language, portability etc. etc.)

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Analysis

At �rst, this chapter summarizes CellStore database engine abilities and interfaces
which can be used and which should be accessed remotely. Latter section provides
information about existing XML and object-oriented databases and focuses on their
remote access possibilities. This information will be used for discussion about features
we want the CellStore client-server protocol should support. Also this can bring us the
inspiration how to design whole protocol or client API. In the last section, there are
confronted several variants for data encoding with protocol requirements.

2.1 CellStore description

CellStore has layered architecture which allows access the database from many levels.
Figure 2.1 shows CellStore architecture in its current form. You can see many access
points symbolized by black dots at the top of the �gure.

One of important layers is, in the middle, a new SELF engine. SELF [2] is a
prototype-based object-oriented language which is even simpler than Smalltalk. SELF
data model allows to store any data as objects without concerning about low level
representation. On the top of SELF layer, there are several interfaces which provide
access in many ways, including XMLDB API [3] and OODB (object-oriented database)
API. In fact, OODB API only allows to perform SELF message passing. All important
APIs are described in following sections.

At �rst, we will describe CellStore XMLDB interface which is the most signi�cant
for XML databases. In latter sections, some other interfaces, including SELF, are
mentioned.

2.1.1 XMLDB interface

XMLDB interface was developed to �t needs for accessing XML-based data in database
engines. (FIXME)

2.1.2 DOM interface

(FIXME)

3

4 CHAPTER 2. ANALYSIS

2.1.3 SELF interface

(FIXME)

2.2 Existing object & XML database engines and their
interfaces

2.2.1 eXist

The project called eXist [4] has started by Wolfgang Meier in 2000. It's written in
Java. I supports XQuery 1.0 and XPath 2.0. According to [4], there are three ways
how to run the database engine.

• In a Servlet Context. The database is deployed as part of a web application in
servlet. It's the default setting.

• Embedded in an Application. In embedded mode, the database is basically used
as a Java library, controlled by the client application. It runs in the same Java
virtual machine as the client, thus no network connection is needed and the client
has full access to the database.

• Stand-alone Server Process. eXist runs in its own Java virtual machine. It pro-
vides either XML-RPC, WebDAV or REST-style HTTP API for remote access.
It use Jetty as a web server providing those interfaces.

The latter case is the most important for us as a comparison for this thesis. XML-
RPC API o�ers all expected XMLDB features such as document retrieving and storing,
manipulation with collections, querying and result retrieving. (FIXME: focus on xml-
rpc implementation and xmldb api mapping.)

2.2.2 GemStone/S - GemBuilder for C

(FIXME)

2.3 Choosing the network data representation

CellStore API has some signi�cant properties which should be considered during the
protocol design. Concrete requirements are summarized in following enumeration.

1. Work with SELF API consist of many simple operations. Our protocol should
be bandwidth e�ective in the light of this fact.

2. CellStore is still in development stage so protocol must be versatile and expand-
able to cover all requirements appearing in future.

2.3. CHOOSING THE NETWORK DATA REPRESENTATION 5

3. Protocol should be implementable easily with various programming environ-
ments. Although C library will be the main implementation, making the protocol
portable will be a plus.

4. It must support various data transfer, including long binary streams for resource
upload.

There were several possibilities of data representation to decide between. Every of
them is facing the requirements its own way.

2.3.1 Text-based protocol and data representation

Text-based representation is used in various widely spread network protocols, including
FTP, SMTP of HTTP. It can be debugged simply because it's human readable. Also,
implementation is simple. Problems come with binary data transfer. To keep data
represented by readable characters, various coding methods are used. For example,
MIME coding is used to encode binary data or non-ASCII characters in SMTP protocol
(SMTP was designed for 7 bit ASCII). This brings some data overhead. Although
CellStore does not support binary resources at present, protocol should be designed
with respect to this possibility.

2.3.2 Binary protocol

Designing our own binary protocol would probably bring us the most data-e�ective
result. All message codes, operation statuses and other control values would have
their byte length as low as possible. But on the other hand, bad design can make
further protocol extension impossible. For example, coding operation number into
one byte would become a problem in future because it would limit the number of
di�erent operations available. Also, some complex data structures that weren't under
consideration before can bring problems later.

2.3.3 Remote Procedure Call

Remote Procedure Call (RPC) is a common name for communication mechanisms al-
lowing programmers to call program code remotely from another machine the same
way as local functions. Several variations were developed like ONC RPC1, XML-RPC,
Corba etc. Their common property is data representation in platform independent
format. This format can be either binary or text-based (mostly XML-like text). XML
format brings visible overhead, thus it's not e�ective for sending of many short mes-
sages. Binary representation seems as a good option.

1Open Network Computing Remote Procedure Call

6 CHAPTER 2. ANALYSIS

2.3.4 Conclusion

(TODO: cleanup, discuss pros and cons)

First two options discussed below have signi�cant disadvantages. Text-based pro-
tocol misses e�ciency du to the binary data coding. Furthermore if XML formatting
was used, e�ciency in case of many short calls would fall down.

The main disadvantage of binary protocol can be problem with extension. CellStore
is still in development and nobody knows what features will be wanted to provide in
future. Our protocol must be versatile in this point of view so custom built binary
protocol is not a good idea in this stage of project.

We chose RPC solution because it is versatile and allows easy protocol extension in
case of further changes and new features addition. From various kinds of RPC we �nally
chose ONC RPC [5] (also known as Sun RPC). It uses binary data representation (will
be described later) so it seems to be bandwidth e�ective. Also, great advantage is that
both SunRPC client and server are already implemented in Smalltalk/X distribution.
Chapter 3 provides information about RPC programming in C and Smalltalk/X in
detail.

2.3. CHOOSING THE NETWORK DATA REPRESENTATION 7

Text Space Cell Space

Highlevel Cache Manager

Storage Manager

Transaction Manager

ACL Manager

Database
Instance

Data Accessor

Object Memory

Object Memory Backend
Common Object Model (Perseus)

XQuery

XML:DB API

OODBClient
Server

OPS
Index

XPath Data
Accessor

Cell Model

Cell Model

Self Model

Lo
w

 L
ev

el
 S

to
ra

ge
F

ro
nt

 E
nd

 A
P

Is
A

pp
lic

at
io

ns

DB Console

Figure 2.1: CellStore architecture [1]

8 CHAPTER 2. ANALYSIS

Chapter 3

RPC programming in C and
Smalltalk/X

(FIXME: cleanup)

From options discussed in previous chapter, we �nally chose ONC RPC [5] (also
called SunRPC). ONC RPC is a protocol formerly developed by Sun Microsystems
[6] for their NFS protocol. It uses XDR [7] as an interface and data representation
de�nition language. It identi�es application by integer number which must by unique
on server system. Remote procedures are identi�ed by procedure number and program
version number. Various transfer protocols, including TCP and UDP, can be used for
connection. Remote port number of service can be obtained via portmap service (which,
in fact, is also RPC application) or input directly during connection initialization.

3.1 XDR description

XDR [7] means for eXternal Data Representation, OSI presentation layer implemen-
tation, used with ONC RPC [5]. Using that, it's possible to transfer various data
information between two interconnected systems running on di�erent platforms.

XDR description uses own syntax similar to C language. It contains signatures of
all procedures which can be run remotely, followed with protocol version and unique
(should be) protocol identi�cator. Following example is taken from [8]. I had to make
some changes because Smalltalk/X implementation lacks some syntax elements.

/* msg.x: Remote msg printing protocol */

typedef string stringArg<>;

program MESSAGEPROG {

version PRINTMESSAGEVERS {

void null(void) = 0;

int PRINTMESSAGE(stringArg message) = 1;

} = 1;

} = 200001;

9

10 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

In this example, one program MESSAGEPROG with number 200001 and one version, 1,
is described. It has two procedures. The �rst one, null, numbered with 0, is intended
for connection testing purposes and should be present. The second, PRINTMESSAGE
takes exactly one argument - a string - and returns integer value.

3.2 RPC in C - rpcgen

For C language, there is a powerful tool called rpcgen that reads out the XDR de�nition
mentioned above and generates both client and server stubs, conversion routines and
application templates.

Useful commands are:

#generate XDR routines and common headers

rpcgen msg.x -N

#also generates sample client code, redirect it to file

rpcgen msg.x -Sc -N > msg_client.c

#generates sample server code

rpcgen msg.x -Ss -N > msg_server.c

#generates makefile template

#(must be edited - must contain list of files to be compiled)

rpcgen msg.x -Sm -N > Makefile

These commands are recommended to run in given order since Make�le generation
automatically adds common headers and XDR routines.

The most important switches of rpcgen command are listed bellow.

• -Sc switch forces rpcgen to generate sample client code to standard output

• -Ss generates sample server code.

• -Sm generates quite versatile Make�le.

• -N option allows "new" style of programming. It means multiple arguments and
easier RPC routines call so arguments are not needed to be passed as structures
anymore. Default mode (without -N option) is for backward compatibility.

• -M generates multi-thread safe code. It's not used in this project yet.

3.2. RPC IN C - RPCGEN 11

int * printmessage_1_svc(stringArg message, struct svc_req *rqstp) {

static int result;

printf("Message: %s\n", message);

result = 1;

return &result;

}

Figure 3.1: Sample C server procedure

3.2.1 Server

Sample server code in msg_server.c �le contains code stubs for each procedure (and
version) declared in XDR de�nition. These procedures will be executed when particular
RPC call is received. In our example we can simply implement the procedure for
PRINTMESSAGE call as shown on �gure 3.2.1. You can see that the procedure name is
assembled from RCP procedure name and program version number. This code will
print the received message to standard output. Integer value of 1 will be returned back
to client.

Similar to this, we need to implement all exported procedures in all versions declared
in XDR de�nition. Note that we do not have to add no code to null procedure stub
since it really does nothing. It's aimed for connectivity tests and thus it should be
declared in every RPC protocol and implemented.

3.2.2 Client

Generated sample client code in msg_client.c �le shows the way of calling the remote
procedures. I modi�ed it a bit to make it simpler and the result is shown on �gure
3.2.2

All we need to make it working is to implement shared procedures on both server
and client side. We can use sample codes as a good start point. When using generated
Make�le, we need add our own �lenames to it.

3.2.3 Building and running

rpcgen tool can generate nice Make�le using the arguments discussed at the beginning
of this section. The only thing we have to do is add all source �le names to the variable
de�nitions at the beginning of the Make�le. For our example, these variables should
look like following.

CLIENT = msg_client

SERVER = msg_server

SOURCES_CLNT.c = msg_client.c

SOURCES_CLNT.h =

12 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

#include "msg.h"

int main (int argc, char *argv[]) {

if (argc < 3) {

printf ("usage: %s server_host message\n", argv[0]);

exit (1);

}

CLIENT *clnt;

int *result;

//creating connection handler, TCP transport is selected

//MESSAGEPROG and PRINTMESSAGEVERS are defined in msg.h file

clnt = clnt_create (argv[1], MESSAGEPROG, PRINTMESSAGEVERS, "tcp");

if (clnt == NULL) {

clnt_pcreateerror (argv[1]);

exit (1);

}

//calling the procedure, name also contains program version

result = printmessage_1(argv[2], clnt);

if (result == (int *) NULL) {

clnt_perror (clnt, "call failed");

}

else printf("Reply: %d\n", *result);

clnt_destroy (clnt);

}

Figure 3.2: Sample C client code

SOURCES_SVC.c = msg_server.c

SOURCES_SVC.h =

SOURCES.x = msg.x

TARGETS_SVC.c = msg_svc.c msg_xdr.c

TARGETS_CLNT.c = msg_clnt.c msg_xdr.c

TARGETS = msg.h msg_xdr.c msg_clnt.c msg_svc.c

These variables are used for identifying all dependencies and link proper modules
together. Also we must modify RPCGENFLAGS variable to make rpcgen using new style
of coding everytime it is called.

RPCGENFLAGS = -N

To compile both client and server, use make command. To get client only, run
make msg_client or make msg_server for server, respectively.

Running the server is easy. Just type

3.3. RPC IN SMALLTALK/X 13

./msg_server

Server will serve any request and can be terminated by keyboard interupt (e.g.
Ctrl+C). Client has two command line arguments, as seen in example code. Run

./msg_client localhost "Your message"

Message is printed on server side and integer of value 1 is returned and printed by
client.

We can also test connectivity using the rpcinfo tool:

#call procedure 0 in program with number 200001 using TCP

rpcinfo -t localhost 200001

#call procedure 0 in program with number 200001 using UDP

rpcinfo -u localhost 200001

Whole source code used as an example in this section can be found on appended
CD or in SVN repository of the project.

3.3 RPC in Smalltalk/X

All classes usable for RPC programming are de�ned within SunRPC namespace. Nice
tutorial can be also found on [9]. This introduction is partialy inspired by that.

Smalltalk/X's RPC implementation is very simple to use. All things that are needed
to do is:

1. Subclass both SunRPC::RPCClient and SunRPC::RPCServer classes.

2. Write XDR description. Assign as a return value of #xdr class method for both
server and client class.

3. Assign TCP/UDP ports to be used on server side. Implement instance method
portNumbers that returns a collection containing all port that can be used.

4. Implement instance methods according to XDR de�nition on server side.

5. Implement instance methods for our own client API, using calls to procedures
de�ned by XDR. This is optional since we can call remote procedures using default
#operation:arguments: method (see sample provided later).

14 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

3.3.1 Server

3.3.1.1 XDR description

SunRPC::XDRParser omits some syntax features from C rpcgen so XDR �le from [8]
had to be modi�ed slightly. Since I patched XDRParser a bit, it is now allowed to
use names for procedure arguments (non-patched parser fails having argument names
given). See later section for details.

XDR is assigned as a class method to server (and also to client class).

xdr

^'

/* msg.x: Remote msg printing protocol */

typedef string stringArg<>;

program MESSAGEPROG {

version PRINTMESSAGEVERS {

void null(void) = 0;

int PRINTMESSAGE(stringArg message) = 1;

} = 1;

} = 200001;

'

3.3.1.2 Assigning ports

Next step is to implement instance method portNumbers (server side only) returning
collection containing all ports that can be used. These ports are tried one by one.
When socket is successfully opened, current port is registered to Portmapper. Note that
Smalltalk/X has its own Portmapper implementation which can be run automaticaly
so it is not needed to have system Portmapper installed.

Simplest way:

portNumbers

^ (11000 to: 11100)

3.3.1.3 Implementing methods

We need to implement every method described in XDR �le (as our server instance
method). Methods have one argument - collection of all RPC procedure parameters,
as they are described in XDR de�nition. These methods are automatically called when
received by server.

PRINTMESSAGE:args

Transcript showCR: (args at:1).

^ 1.

The null procedure is already implemented in superclass.

3.3. RPC IN SMALLTALK/X 15

3.3.1.4 Controlling the server

Following code shows the way how to control our new server (expecting our server class
is named EchoServer).

"start using TCP (default)"

EchoServer start

"start using UDP"

EchoServer startUDP

"stop, the most polite way I found"

EchoServer serversRunning first release

"program definition is stored in class object"

"after altering xdr method we need to force parsing it again"

EchoServer initDefinitions

EchoClient initDefinitions

Startup will fail when the program number is already registered in portmapper.
To remove previous registration, use following command (as root) which will remove
registration for program with number 200001 and version 1.

rpcinfo -d 200001 1

After sucessful server startup it's posible to use client from C section. Note that we
used TCP protocol for our C client so server has to be inicialized using TCP. Smalltalk
implementation does not run using both UDP a TCP at the same time.

Our implementation of remote protocol uses new SunRPC::RPCMTServer which
is able to process more connections at once using separate Smalltalk processes. It is
very simple enhancement of standard RPCServer class and also has the same API. It's
discussed in detail in section 5.1.1.

3.3.2 Client

Client is also very easy to implement. XDR assignment is done the same way as in
case of server. Tricky solution can be refering to server speci�cation:

xdr

^ EchoServer xdr.

Default client also has universal methods to invoke remote procedures but in general,
it's better to implement our own API. Following method does the message sending.

printMessage: string

"prints message on remote screen"

^ self operation: #PRINTMESSAGE arguments: (Array with: string).

16 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

3.3.2.1 Controlling the client

There exist several ways how to connect. RPCClient has methods to connect without
asking the portmap service. Following code will connect using portmapper query and
call PRINTMESSAGE procedure which will print given message on screen (in case of C
server) or Transcript (in case of Smalltalk server). Afterwards the return value is
printed by client.

| client reply |

client := EchoClient toHost: 'localhost'

reply := client printMessage: 'hello world'

client close.

Transcript showCR: reply.

3.3.3 Various Smalltalk/X RPC patches

During the development process, I found that Smalltalk/X RPC implementation lacks
some important features which were used in our protocol implementation.

• XDR parser is not compatible with rpcgen. It does not allow names of argu-
ments in procedure de�nitions. But rpcgen requires them to generate C code
successfully. It's annoying to convert the XDR de�nition �le to Smalltalk RPC
compatible form each time it is modi�ed. Due to this, I modi�ed the XDR parser
in SunRPC::XDRParser class. The #procedureDefmethod represents procedure
de�nition token in recursive descent implementation of top-down parsing model.
I modi�ed this method to make argument names optional (identi�er token is read
when found). Now parser can read unmodi�ed content of service_rpc.x �le.

• XDR coder in SunRPC::XDRCoder class had not have array encoding and decod-
ing implemented. Several RPC procedures in our protocol use arrays as a return
values. XDR parser in Smalltalk/X recognizes array de�nitions but XDR coder
had not been able to use it. Array binary representation is described in RFC
4506 [7]. Encoding and decoding are performed in #encodeArray:type:with:

and #decodeArrayWithType: method, respectively. Coder now supports both
variable and �xed length array.

� For �xed size arrays, always the same number of values are expected on
stream.

� In case of variable size, the array is prepended by 4 Byte value containing
the number of values in oncoming array.

• Smalltalk/X SunRPC implementation is able to process at most one TCP con-
nection or UDP datagram at once. Since we want to use TCP connection to be
active all the time client is operating, our server has to be able to process more
than one connection at once. This issue has been solved by former SunRPC server
modi�cation which brings multi-threaded processing. It's described in detail in
chapter 5.1.1.

3.4. OTHER LANGUAGES 17

3.4 Other languages

(TODO: discuss this section placement)

ONC RPC is wide spread standard so several RPC implementations can be found.
In consequence, our new protocol can be ported to various platforms. Several imple-
mentations for di�erent languages exist. During a short search, I found following:

• Remote Tea, pure Java implementation of ONC RPC.
http://remotetea.sourceforge.net/.

• rpcc - Python ONC RPC Compiler, together with demo RPC implementation
seem usable.
http://www.cs.umd.edu/~gaburici/rpc/ and
http://svn.python.org/view/python/trunk/Demo/rpc/

• (FIXME: add some implementations for windows C)

I have not tested them. However, RPC and XDR are quite simple to implement so
porting might not be a big problem.

18 CHAPTER 3. RPC PROGRAMMING IN C AND SMALLTALK/X

Chapter 4

Protocol

The aim of this chapter is to describe problems with remote protocol speci�cation.
First section comes with discussion about problems with mapping of object-oriented
world to non-object environments, including the XDR interface. Next sections bring
information about protocol message and control �ow, including special behavior during
large �les upload.

4.1 Mapping object world to non-objected language

Object-oriented programming languages have some advantages but all of them cannot
be used over the internet connection directly. There are two main issues when discussing
object techniques mapping to procedural language:

• Object references. Remote handling must protect object from deletion caused by
garbage collector on server side.

• Exceptions. These cannot be simply raised over network connection since client
side might not have particular characteristic to handle them. For example, C
language itself has no �exible exception mechanism.

4.1.1 Handling the objects remotely

All database operations are done on server side so we need a mechanism for referenc-
ing the objects we process. I used unique unsigned 4 Byte integer values which are
transferred in RPC calls or replies, respectively, to identify remote objects.

There is no type control in protocol. All object references have the same type.
The reason is simple. Target platform (e.g. C language) might not know inheritance
and categorizing the references may be tough and not �exible because in some cases,
remote operations can return reference to various objects. Due to this, type control
is performed on server. Alternatively, user can ask for object class name, but this
operation return string because class types cannot be identi�ed by enumerated value
(it's di�cult to determine all used classes), so this method is useful for debugging only.

19

20 CHAPTER 4. PROTOCOL

Due to the fact that garbage collector is present in Smalltalk/X, these references
cannot be simply equal to object memory addresses. When garbage collecting process
is run, objects addresses will probably change every time, but our references, stored on
client, won't.

Also, we need to protect the objects from erasing. References from client don't
a�ect garbage collecting process so these objects would be deleted if there weren't
another reference (and there aren't for almost all objects). Both these problems are
solved using SessionStorage class. It is described in chapter 5.1.3.

4.1.2 Exceptions

In object-oriented languages, errors are represented by exceptions, tiny objects which
hold information about error that has occurred. In our protocol, we need to transfer
the information they are holding towards the client side. For this purpose, exceptions
are represented by enumerated values. Every exception raised on server is caught
and converted to its proper code number. These codes are speci�ed in cs_status

enumerated value in service_rpc.x �le. Finally, this code, together with the error
message contained in exception, is packed into the reply and sent to client.

To acquire this way of error handling, every RPC procedure reply (except of null
procedure) is a union value. First item, status contains error code or CS_STATUS_OK
value (equal to 0) signaling no error. If operation �nishes properly (status is equal
to 0), next item, value will be present and will contain operation result. In case of
failure, string item named description contains error message. Sample reply de�nition
is shown on �gure 4.1. Note that items in switch cannot have the same identi�cator
because rpcgen tool generates code which cannot be compiled then.

union cs_reply_int switch (cs_status status) {

case CS_STATUS_OK:

unsigned int value;

default:

cs_arg_string description;

};

Figure 4.1: Sample reply de�nition

4.2 Message & control �ow

Whole protocol is quite simple and straightforward. It can be described in following
sequence (also, see �gure 4.2).

1. Ask Portmapper for application port. This option is recommended since server
may use di�erent port every time it is run. Application is identi�ed by program
number.

2. Connect. Client have to open new TCP connection to port retrieved from portmap
service.

4.2. MESSAGE & CONTROL FLOW 21

3. Send HELLO request. This is not mandatory, but recommended. When maxi-
mum connection is reached, server responds with CS_ERROR_TOO_MANY_CONNECTIONS
error code to the �rst procedure being called. For this reason, it's recommended
for client libraries to use this �rst call to get informed and disconnect before
any operation attempt is done. In future, HELLO procedure may serve for more
purposes.

4. Call operations as they are requested.

5. Disconnect.

HELLO

Another RPC
request

Import/Export request

Data transfer

SOCKET_JOB_STATUS

SOCKET_JOB_ABORT

Disconnect

Disconnected

getPort request

Connect

Disconnected

[OK]

[Next request]

[Import/Export request]

[Continue]

[Abort]

[Everything done]

[Maximum connections exceeded]

Figure 4.2: Remote access protocol, capitalized labels represent RPC messages

As seen on �gure 4.2, there are two possibilities how to perform an operation in
connected state:

• singe-call operations,

• multi-call operations.

22 CHAPTER 4. PROTOCOL

4.2.1 Single-call operations

Almost all operations related to current CellStore features are single-call. They're
performed as the message is delivered and decoded. In �nal API implementation, these
operations are mapped 1:1 to the protocol de�nition and they're atomic.

4.2.2 Multi-call operations

Multi-call operations consist of more than one messages and other action. To reach
operation �nal state successfully, client has to perform several operations in given order.

At present, the only multi-call operations are large �les import and export actions.
They're called "Socket jobs" since they use another connection (represented by network
socket). To achieve proper behavior, several auxiliary operations are needed. Large
�les transfer is described closely in chapter 4.3, concrete implementation is explained
in chapter 5.1.5.

4.3 Large �le transfer

When not mentioned, all issues in this section will be explained on case of �le imports.
Download operations can be thought similarly.

Transfer of large �les can be problem for RPC based protocol. It's neither possible
nor acceptable to store whole �le in a memory to encode it into XDR stream and receive
it at the opposite side. Even if we divide the �le into chunks and send them separately
in many RPC requests, some temporary memory (RAM or hard drive) is needed to
store these chunks together before processing.

Since XML readers or writers work on streams, it's memory e�cient to parse the
�le or generate output, respectively, directly on the network stream without storing
to memory or temporary �le. Both XML reader or writer is invoked by calling the
only method having a stream as an argument. As a consequence, the whole processing
operation is atomic. During the RPC call, client is in blocking state and waits for reply
so he is unable to send or receive. As a result, import and export operations cannot be
implemented in one RPC call.

As explained above, data transfer cannot be atomic from the protocol point of view.
As seen on �gure 4.2, multi-call operation have 3 phases:

1. initialization,

2. data transfer and processing,

3. checking status.

First and last phase are implemented as RPC calls. Initialization does all required
actions to prepare server side for data transfer. For example XMLDB_UPLOAD_RESOURCE
procedure call announces XML database resource upload. Checking status is done with
SOCKET_JOB_STATUS message.

Note that only one Socket job is allowed at the same time. Once new initiation
procedure is called, previous job is aborted.

The middle action (data transfer) has several possibilities how to solve it:

4.3. LARGE FILE TRANSFER 23

• Receive whole data in small chunks via RPC calls and save it to the temporary
�le or memory, then process it on server side. Memory is not good solution since
the �le may be large and virtual machine has limited memory. File seems as a
suitable emergency option but better solutions follow.

• Receive data in small chunks via RPC requests and push them into server-local
pipe which is directed to the parser running in another process. This require
additional data processing at server side.

• Use RPC connection stream to serve data to the importer. This solution can be
di�cult to implement because all possible error states have to be under consid-
eration to ensure that RPC connection won't be broken during the unexpected
error. Also, it must be save to return the stream to the RPC processing mode (to
receiver another request). This option may be unacceptable on some platforms
and client implementations since we need to get to the RPC connection socket
descriptor.

• Use separate TCP stream to serve data. This option is better in relation to RPC
server and error handling is easier.

The last option was selected because it's easy to implement on both client and
server side. It versatile enough to provide platform for various features which can be
implemented in future. To allow process to be aborted in any time by another RPC
call easily, importer should run in separate process. See realization notes in chapter
5.1.5 for details.

4.3.1 Data transfer

Protocol of data transfer depends on the direction of the transfer. Download jobs are
simpler so they will be described at �rst.

4.3.1.1 Data download

When download job is initiated (for example, by calling XMLDB_DOWNLOAD_RESOURCE

RPC procedure), all the client has to do is:

1. Connect to server address and given port. Port number is retrieved in reply of
initiation procedure call.

2. Read out all data until the EoF1 �ag is detected (remote side closes the connec-
tion). Using C sockets, EoF is detected when blocking read return no data. If
export operation fails on server, remote connection will be closed immediately.

3. Close the opened socket.

After data transfer is �nished, client must ask server for operation status. This is
done with SOCKET_JOB_STATUS call. Procedure will contain CS_STATUS_OK status value
if everything is done. Otherwise, code value representing exception which caused the
error is returned. Also, reply contains message extracted from the exception.

1End of File

24 CHAPTER 4. PROTOCOL

4.3.1.2 Data upload

For uploading data from client to server, several modi�cations had to be applied. It is
expected that XML parser reads data until the end of �le (or stream, respectively) is
reached. Converted to network socket, it means that connection have to be closed to
reach the EoF signalization.

But that behavior is not acceptable since client needs to wait for ACK2 message.
It's important for client to ensure that import is �nished before upload job status is
checked to avoid non-consistent states. The best way to make client waiting is to
use blocking read operation. So connection can be closed just after ACK message is
received.

To achieve requested behavior, we must emulate EoF signaling other way. Data
being sent to server are divided into blocks. Before every block is written to socket,
client has to send header �rst. This header is 4 Byte integer value in network format
announcing the length of the oncoming block. Header with zero value indicates reaching
the end of input �le.

Block size can vary during the transfer, server is able to process every length. But
too short blocks are not recommended because server operations can sometimes want
to read long data. In this case, server must merge the data from more chunks divided
with headers. This brings small performance fall. Also data transfer e�ciency will fall
when short blocks are used because more header data are sent. In general, block of
sizes in hundreds of Bytes are long enough.

After sending the zero header, client waits for ACK message, 4 Byte integer, which
has currently value of 7777 (but this is not important since client does not any value
check). After receiving, the connection is closed. Then, client does SOCKET_JOB_STATUS
procedure call to check the upload status.

Structure of data communication is shown on �gure 4.3.

2Acknowledgment

4.3. LARGE FILE TRANSFER 25

Upload confirmed

Disconnected

Connect

Done?

Send header = 0

Send header = N

Send N bytes of data

Receive ACK

Disconnect

[All data sent]

[Some data left]

Figure 4.3: File upload protocol in detail

26 CHAPTER 4. PROTOCOL

Chapter 5

Realization

This chapter describes the most important issues which had to be solved during the
design and implementation of remote protocol. There also discussed few patches of
original Smalltalk/X SunRPC implementation code to make some features �t our needs.

Figure 5.1 provides brief look at whole architecture of client-server protocol. Server
side is represented by Smalltalk code. Client side is primarily done in C language, as
explained in former chapters.

5.1 Server side - Smalltalk/X

As seen on architecture �gure 5.1, RPC based protocol depends (not ultimately) on
portmap service which registers running service and provides information about port
the service is running on. Portmapper daemon often runs on Unix systems or can be
installed. Also, Smalltalk/X installation contains its own portmapper so it's used when
the system one is not found.

Whole server layout is described on �gure 5.2. Server consist of many important
components represented by concrete classes. Most of them are described in this section.

(FIXME: strange square in �gure)

5.1.1 Multi-threaded RPC server - RPCMTServer class

Smalltalk/X comes with SunRPC server implementation which is able to process at
most one TCP connection at once (or sequential UDP requests). For our purpose, where
long term connections from clients are expected, we need to handle more connections
simultaneously. On that account, I enhanced the basic SunRPC::RPCServer with
features described below.

I created SunRPC::RPCMTServer as a child class of former RPCServer class. It
inherits most of its functionality and adds ability to process more connections at once.
Note that this feature, by principle, works with TCP connection only.

27

28 CHAPTER 5. REALIZATION

Client Server

Portmapper

RemoteServer

Session
storage

ONC/RPC standard functions

CellStore engine

libcellstore

cellstore.c

cellstore_xmldb*.c cellstore_self.c

cellstore_tools.c

Client program

XMLDB

SELF

getPort - UDP/111

Register

T CP/6666

Figure 5.1: Brief capture of client-server implementation architecture

Once connection is accepted by main server process1, the new process is created and
the whole connection is handled in this new process. During the fork, also new server
object is created and assigned to current connection. Child server objects are connected
with their parent via instance variable. This link is used to share some resources, e.g.
reference to CellStore database instance.

Once forked, process calls former RPCServer code. In fact, changes are minimal.
To make basic protection against overloading, number of simultaneous connections is
limited. When maximum amount of child processes is reached, all new connections will
be closed by the main server process immediately.

Few further changes have been made in concrete implementation in RemoteServer

class which is discussed in another chapter. These changes are speci�c for current
client-server protocol and aren't related to general multi-threaded modi�cation.

5.1.2 Server core - RemoteServer class

This object exist for each current remote connection and represents instance of RPC
session. In fact, it inherits SunRPC::RPCMTServer class and implements all exported
operations.

Main object purposes are:

1Note that term "process" stands for Smalltalk/X process and means something di�erent than Unix
process. Smalltalk virtual machines have their own scheduler and memory management. Smalltalk
processes are rather similar to threads because they have access to whole virtual machine memory (as
opposite to Unix processes which have their own virtual memory space)

5.1. SERVER SIDE - SMALLTALK/X 29

SunRPC::RPCServer

- defin i tions
- port
- pro tocol

+ handleCl ient(aSocket)
+ loop()
+ start()
+ xdr()

SunRPC::RPCMTServer

+ handleCl ient(aSocket)
+ handleCl ientHelper(aSocket)

RemoteServer

+ ...RCP operations ...()
+ defau l tXdr()
+ xdr()

DatabaseInstance

XMLDB::
XMLDBDatabase

SessionStorage

- storage

+ get:(aKey) : vo id
+ get:type:(aKey, aClass)
+ get:types:(aKey, Array)
+ store :(anObject)

AbstractService

+ registerT o:(databaseInstance)
+ shutdown()
+ start()
+ unregisterFrom :(databaseInstance)

RPCService

+ shutdown()
+ start()

SocketJob

Described on
SocketJob class
diagram

Both classes are
im plem ented in
cel lstore :core package

socketJob

server

registeredServices

1

xm lDatabase

databaseInstance

0..1

parent

0 ..*

Figure 5.2: Server - basic structure

• RemoteServer overloads some of RPCServer and RPCMTServer code to get bet-
ter behavior and allow simpler implementation of new functions.

• De�nes XDR description of protocol. #xdr method was improved to load current
XDR de�nition from �le located in SVN2 working copy or local �le. This feature
was used during development and ensures that the most recent code is used.

• Implements all exported RPC operations.

5.1.2.1 Operations

As shown in RPC introduction chapter, all RPC calls are simply mapped to the methods
with the name equal to procedure name de�ned in XDR de�nition �le. As noted in
chapter 4, all result values of RPC calls consist of at least two values. The �rst one
is always the status code. The second one depends on status. When operation end
properly, it contains reply value.

In Smalltalk/X implementation of RPC, struct-like (struct, union) reply values are
expected as dictionaries. For example, reply to DOM_LIST_COUNT procedure call might
look like code on �gure 5.3.

2Subversion. Currently, the best way to get whole server code is to load it directly from Subversion
repository

30 CHAPTER 5. REALIZATION

DOM_LIST_COUNT: args

|reply|

reply := (self sessionStorage getNodeList:(args at:1)) length.

^ Dictionary new

at: 'status' put: #CS_STATUS_OK;

at: 'value' put: reply.

Figure 5.3: Code of RPC operation with standard reply behavior

DOM_LIST_COUNT: args

|reply|

reply := (self sessionStorage getNodeList:(args at:1)) length.

^ reply.

Figure 5.4: Code of RPC operation after enhancement

But this example only shows solution in case that operation �nished correctly. If
operation raises an exception, this will not be caught and not stored into the reply. In
addition, server process will be aborted due to the exception. So every exception must
be caught and the reply value must be modi�ed according to protocol speci�cation.

This is done in overloaded #performOperation:withArguments: method. To dis-
tinct each exception type from others, every signi�cant class that describes some im-
portant error has #cellstoreIdentify method de�ned. This method returns unique
status code. These codes correspond with de�nition of cs_status enumerated value
in XDR de�nition. Once caught, the identi�cation method is called and the return
value is set as a operation status. Default value, returned by base Object class, is
CS_ERROR_OTHER.

This enhancement also allows programmers to return operation value only. The
whole reply value is packed into the reply in #performOperation:withArguments: so
the resulting code of each operation may look simpler as shown on �gure 5.4.

Sometimes it's necessary to construct whole reply in method which implements
the operation. For this purpose, reply value packing mechanism was modi�ed to detect
whether whole reply is received from concrete operation method already. To distinguish
this situation, operation must return reply as ReplyDictionary object. This class is
private in RemoteServer. If return value with this class identity is detected, the reply
is passed unchanged as is.

To identify its own errors within the client-server protocol project, RemoteServer

also contains another private class, CustomError. This is an exception class pro-
viding several status codes to identify various custom errors. It also implements
#cellstoreIdentify method to get the proper code for RPC reply value.

The server core also contains some modi�cations for testing and debugging purposes.
These modi�cations are discussed in chapter 6.2.1 (Testing).

5.1. SERVER SIDE - SMALLTALK/X 31

5.1.3 Session object holder - SessionStorage class

To handle garbage collector issues mentioned in chapter 4.1.1, I created a structure
which stores references to objects being used during the session and assigns them
unique reference numbers. This structure is implemented in SessionStorage class and
its enhanced version (discussed later) in EnhancedSessionStorage.

Basic method #store: adds given object to storage and return unique reference.
Backwards, #get: method return object based on given reference or throws an excep-
tion if none with such reference exists.

Storage can also provide basic type control. Using the #get:type: or #get:types:
method, server-side operations can check that they're obtaining object with proper
class or subclass. Note that this is the only way how to ensure that proper object
is processed since client side has no type control. Checking for type protects client
application programmers from "method not understand" errors caused by their mis-
takes. For example, when XMLDB_DOWNLOAD_XML routine is called, it ensures that the
object given is either XML-like resource or XQuery result. Many methods for concrete
cases were created as wrappers for universal methods mentioned above. For instance,
#getResource: calls

self get:aKey type:XMLDB::Resource

If aKey variable does not contain reference to object of XMLDB::Resource class or
its subclass, an exception with CS_ERROR_OBJECT_TYPE_MISMATCH code is raised.

5.1.4 EnhancedSessionStorage class

Various CellStore interfaces return fresh objects every time they are called. This prop-
erty is not a plus and can be reduced easily since almost objects handled by session
storage are "object proxies". These objects point to an object in SELF memory space.
When called three times, the same method always return new instance of object proxy
pointing to the same object in SELF memory space. Standard behavior of Session-
Storage is to always assign new unique ID when #store: method is called. As a
consequence, client application cannot do simple identity compare based on remote
object reference equality.

Using the property of the object proxies, EnhancedSessionStorage is able to detect
that the object to be stored has the same content - cell pointer (object proxies with
the same cell pointer refer to the same object in SELF memory). It uses cross-directed
identity dictionary having objects as keys and their remote reference as values. This
dictionary can be used to quickly search for already stored object. When detected, old
reference value is returned. In this case, client is able doing quick compare by reference
value compare only.

Unfortunately, this feature couldn't be used in current remote server con�guration.
Not all objects handled by remote server are object proxies. For example, DOM objects
are stored outside SELF memory and their content does not say anything about their
identity. For example, two elements with the same name and same attributes are not

32 CHAPTER 5. REALIZATION

identical. If we treat them as identical, we won't can change content of only one of
them. Also DOM object cloning wouldn't work.

For this reason, EnhancedSessionStorage is not used until DOM operations are re-
implemented to direct access operations on SELF storage. At this time, this seems as
the only precondition for allowing enhanced storage usage.

To allow client to compare identities and values, two operations were created.
OBJECT_EQUAL compares remote objects by their content, OBJECT_IDENTICAL by their
identity, respectively.

5.1.5 Large �les transfer - SocketJob class

Protocol for large �les transfer is described in section 4.3. Implementation on server
side can vary independently on protocol speci�cation.

Running import or export operations in main process (in fact, process associated
with concrete client connection) is dangerous since when launched, importer cannot be
stopped any other way than closing the connection. But we cannot guarantee that all
importers or exporters will react to this behavior properly. When separate process is
used, whole job can be simply cancelled by killing this particular process from another
RPC call.

SocketJob class is a root of a hierarchy responsible for large object transfer. Whole
hierarchy is illustrated on �gure 5.5. SocketJob implements methods common to both
directions of data transfer. The most signi�cant are:

• #portNumbers (class)
Speci�es the range of available ports that can be used for incoming connection.

• #fork:name:

Runs given block in a new process. Kills previously initialized process if there is
any.

• #abort

Aborts already running job.

• #status

Returns current job status. Retrieves error code if some exception has occurred
or CS_SOCKET_JOB_WORKING if process is running yet. Otherwise, it returns
CS_STATUS_OK.

On next level of hierarchy, there are generic object for uploading and downloading,
UploadJob and DownloadJob, respectively. They implement whole code which is com-
mon to all jobs and prepare interface for implementing concrete upload or download
job. Signi�cant methods on this level are (explained on UploadJob class, DownloadJob
has similar behavior).

• #prepare

Creates new socket and makes it waiting for incoming connection. It returns a
port number of the listening socket. This method is called during the �le transfer
initialization RPC call (e.g. XMDLB_UPLOAD_RESOURCE).

5.1. SERVER SIDE - SMALLTALK/X 33

SocketJob

- error
- process
- rem oteSocket
- runn ing

+ abort()
+ closeStream ()
+ errorM essage()
- fo rk:nam e:(aB lock, nam e)
+ ki l lProcess()
+ port()
+ portNum bers()
+ prepare()
+ sta tus()

UploadJob

- basicImportTo :(resource)
+ closeStream ()
+ errorT estingM ode()
+ forkAndIm portT o :(resource)
- im portT o :(resource)
+ prepare()

DownloadJob

- rem oteConnection

- basicExportFrom:(resource)
+ closeStream ()
- exportFrom :(resource)
+ fo rkAndExportFrom :(resource)
+ port()
+ p repare()

XMLDownloadJob

- basicExportFrom :(resource)

XMLUploadJob

- basicIm portT o :(resource)
+ canUploadResourceT ype()

Genera l ized class fo r
resource download ingGenera l ized fo r resource

upload ing

Com m on in terface to
hand le socket jobs

Figure 5.5: SocketJob hierarchy

• #forkAndImportTo:

Creates new process and runs #importTo: in it.

• #importTo:

Waits for incoming connection from client and runs importing process in #basicImportTo:
method which has to be implemented in every particular class and does opera-
tions speci�c for concrete resource being uploaded. I note that these method
shouldn't be called directly from main process.

When implementing new process, all programmer has to do is to inherit subclass
from UploadJob class and implement #importTo: method which imports data from
object local stream (or socket) to resource gives as an argument. Similarly, make
subclass of DownloadJob and implement #ExportFrom: method.

In following sections, details about data transfer are discussed.

5.1.5.1 Downloads

Download process can be realized very easily. In Smalltalk/X, network socket (realized
in Socket class) behaves as any other stream. So it can be passed to XML parser or

34 CHAPTER 5. REALIZATION

writer, respectively, instead of the �le stream or any other stream. In case of upload,
situation is slightly di�erent and it's described below.

In this case, new socket which is used for data transport has always to be initialized.
So at �rst, request message is sent. This operation prepares new socket and other
required things. Then it replies with port number the socket is listening on. After
that, client can connect to remote server address and given port and send or receive
data, respectively.

When data is transfered or connection is closed unexpectedly, client sends
SOCKET_JOB_STATUS message to check previous operation status. In case of failure of
any kind at server side, reply will contain proper exception code and error message.

5.1.5.2 Uploads

Upload processes should use NetReadStream class instead of standard Socket to allow
client wait until all server operations are �nished. This prevent client from asking for
operation status before it is �nished.

5.1.6 Special read stream - NetReadStream class

(FIXME: needs heavy rewriting)

To allow import operations using the remote connection socket the same way as
in case of download actions, an enhanced network stream (NetReadStream class) was
created. It allows EoF signaling while connection is not closed. As discussed before,
data being sent from client are divided into blocks. Each block is prepended with
special header created by one integer value indicating the block length. When no data
is available, zero value is sent to announce end of �le.

At the server side, NetReadStream reads out the header and remembers the number
of bytes available for receiving. Then, it maps all read operations to socket methods and
decrements the value according to read bytes. Seek operations, similarly to standard
Socket class, are disabled. When available bytes are exhausted, next header is read.
If more than announced data is required, reading is divided to more phases. Bytes
already announced are read. Then new header is read and �nally, remaining bytes are
received (by doing a recursive call on itself). Both parts of data are merged into one
collection and returned. After zero value in header is read, NetReadStream indicates
end of �le.

As noted before, client side waits for ACK message after all data is sent. When
XML parser reaches the end of �le, the job is �nished successfully. For this purpose,
#ack method is implemented. It sends ACK message to client. Then, the connection
can be closed.

The most important methods are:

• #initSocket

Creates listening socket where connection from client will be expected. Returns
port number.

5.1. SERVER SIDE - SMALLTALK/X 35

• #accept

Waits for incoming connection.

• #readBlockHeader

Reads out the header (4 Byte integer in network format). If zero header is
received, it will set EoF �ag.

• #ensureHeaderRead

If no more bytes are left announced, reads next header. Otherwise, does nothing.

• #ack

Sends ACK message to client and closes connection.

• #close

This method does nothing. Parsers can close stream as they reach the end of �le.
But we do not want them to do this.

• (TODO: note about read functions and their behavior, chunking to read long
data etc...)

5.1.7 Example - XML import

1. Client asks for upload into given resource by calling XMLDB_UPLOAD_RESOURCE

operation. It passes resource reference as the only argument.

2. Server prepares new socket for upload, makes it listening on free port and forks
process with connection accept and parsing code. All these actions are established
by XMLUploadJob object.

3. Server sends back the port number of listening socket as a reply to previous
request.

4. Client connects to remote port and writes whole �le into socket by the way
speci�ed before. In the same time, XMLUploadJob accepts connection and starts
parsing.

5. Client waits for acknowledge message (in blocking read). It is sent by the server
when �le is completely parsed.

6. After receiving, it closes the upload connection and asks for import result using
the SOCKET_JOB_STATUS procedure.

5.1.8 CellStore service - RPCService class

RPCService class represents CellStore service. This service has interface uni�ed with
other services that can be available to CellStore. Service can be registered easily, by
evaluating

CellStore::RPCService new registerTo:instance.

36 CHAPTER 5. REALIZATION

instance instance variable is expected to be CellStore DatabaseInstance object.
Service is run when the #startServices method of DatabaseInstance is called. Cell-
Store service adds another instance variable, server which points at main (listnening)
RemoteServer instance. It implements two methods only:

• #start - code for service startup,

• #shutdown - code for service shutdown and cleanup.

5.1.9 Remote server launcher - RemoteServerWizard class

Launching the database instance together with services cannot be proceeded with only
one command. To make running the server as easy as possible, RemoteServerWizard
class was written.

Actually, it's only wrapper for several commands and provides few tasks with
database instance. All routines are implemented as class methods.

• #start

Create clean database with remote server.

• #stop

Stop the remote server and remove database.

• #toggle

Toggle between running and stopped state. This method is assigned to the button
which is added to Launcher toolbar during the service_rpc package load.

• #console

Show database console.

• #loadData

Load testing data from SVN repository into database.

• #databaseInstance

Return database instance.

• #xmlDatabase

Return the XML database main object.

The code included in this class is a very good reference to get familiar with database
instance and remote server handling.

5.2 Client side - C library

(FIXME)

Client library in C is based on code generated by rpcgen tool. Whole library
is organized into modules and most of them correspond to some subset of exported
CellStore functionality.

5.2. CLIENT SIDE - C LIBRARY 37

5.2.1 API guidelines

Almost all operations in libcellstore follow similar coding habits. Every function which
invokes remote procedure call returns operation status code. This status code repre-
sents relevant exception code or contains 0 (CS_STATUS_OK). All return values (object
references, XML strings, string arrays, etc.) are passed via pointer arguments.

Few datatypes were de�ned in cellstore.h as mappings over XDR de�ned types
to provide the same type naming conventions along the libcellstore library. These are

• CellStoreStatus - operation status code,

• CellStoreSession - pointer to RPC client connection,

• CellStoreObject - reference number to remote object,

• (TODO: make it complete)

(TODO:Example declaration and code use)

5.2.2 Library structure

(FIXME: �nish modules description)

• cellstore.c

Main module, its responsible for connection handling (including direct collec-
tion opening using XMLDB URI) and basic operations such as remote objects
handling.

• cellstore_xmldb.c

Main module for XMLDB interface. It provides basic XMLDB operations, in-
cluding collection openning.

• cellstore_xmldb_collection.c

This module provides interface for manipulating with XMLDB collection proper-
ties. In fact, all operations correspond with CellStore XMLDB interface.

• cellstore_xmldb_resource.c

Actions with XMLDB resources.

• cellstore_xmldb_download.c

• cellstore_xmldb_upload.c

• cellstore_xmldb_query.c

• cellstore_dom.c

• cellstore_oodb.c

• cellstore_tools.c

Provides private functions for whole libcellstore.

38 CHAPTER 5. REALIZATION

• cellstore_error.c

Private functions for work with error statuses and global error message variable.
As mentioned before, all functions returns operation status code. Also, they set
up global error message string which can be accessed via this module.

• cellstore_errmsg.c

This module is automatically generated by cascade of several scripts (xdr_parse.sh,
xdr_parse.awk and xdr_parse.sed) from XDR description in service_rpc.x

�le. It contains the only function. This function writes out the textual descrip-
tion of given error code and appends the error message. Its made of one huge
switch statement containing all status codes from XDR �le. Textual description
is taken from comment in cs_status enumerated type declaration. Every value
of enum is expected to be in form as following:

CS_ERROR_OTHER = 1, /** Unsorted Error **/

It will produce code similar to following:

case CS_ERROR_OTHER: fprintf(stderr,"[Unsorted Error] %s\n", msg);

break;

5.3 Sample Smalltalk/X client

To illustrate guidelines for creating of Smalltalk client, I have made simple example
code of this client. Since Smalltalk client is not important for us, it's not complete at
all. But it can show the way of implementing the interface in object-oriented languages.

Smalltalk client object layout of XMLDB interface should match with XMLDB API
[3]. Figure 5.6 shows layout of sample client code illustrating guidelines for Smalltalk/X
client creating. Other parts as SELF interface and DOM also should be like their server
side complement.

5.3. SAMPLE SMALLTALK/X CLIENT 39

RPCClient

RemoteClient

+ xdr()
+ reconnect()
+ getXM LDBDatabase()
+ ident()
+ p rin tM essage:(String)

Result

- resul t

+ wi th :wi thCl ient:(resource , cl ient)
+ asXM LString()

XMLDBCollection

- co l lection

+ wi th :wi thCl ient:(co l lection, cl ien t)
+ xquery:(query)

XMLDB

+ newWithCl ien t:(cl ien t)
+ acceptsUri :(aString)
+ getCo l lection:user:pass:(uri , usernam e, password)
+ getRootCo l lectionUser:pass:(usernam e, password)

A l ready im p lem ented
in Sm al l ta lk / X

getXM LDBDatabase()

cl ien t

cl ient

cl ien t

xquery: (query)

getCo l lection:user:pass:(co l lection , usernam e, password)

ge tRootCol lectionUser:pass: (usernam e,password)

Figure 5.6: Structure of the sample Smalltalk/X client

40 CHAPTER 5. REALIZATION

Chapter 6

Testing

6.1 Unit testing tools

Unit testing i a crucial principle of so-called Extreme programming or Test-driven
development techniques.

Former approach uses short development iterations and unit tests as a way of check-
ing of the code correctness. Unit tests also allow programmers to do heavy refactoring.

Using the latter approach, the test covering all features which have to be imple-
mented is written. Then, using tools like SUnit, tests are run and the program is being
developed until the tests passes all cases.

6.1.1 Smalltalk/X - SUnit

Smalltalk/X have its own implementation of SUnit tool. It runs tests divided into
categories or, in new version, into packages. When some tests fails, developer is allowed
to debug appropriate test case in Smalltalk debugger and correct the code. Then he is
able to rerun the test which have failed before.

6.1.2 C Language - Check library

Check [10] is one of existing unit testing frameworks for C language. It has a simple
interface for de�ning unit tests. Tests are run in a separate address space, so Check can
catch both assertion failures and code errors that cause segmentation faults or other
signals.

In contrast to SUnit, Check needs whole API to be declared before running the
tests because it has to compile them �rst. Without functions and data types being
declared, there is no way to compile them. Small example of unit tests using Check
framework is shown in later section.

41

42 CHAPTER 6. TESTING

Figure 6.1: Smalltalk/X SUnit tool

6.2 Test coverage

6.2.1 Server side - Smalltalk/X

Server side was primarily tested for proper handling of exceptions and return values.
Most of remote operation tests were inspired by client side tests. RPC server operations
are called from point in which the RPC reply is completely assembled and all exceptions
have been caught and processed in the reply. So the tests allow to check proper return
values of error codes.

XDR coder can encode enum values from both numbers and symbols. Numbers are
used when error code is calculated, for example in XMLDB::XMLDBException class.
To make testing as easy as possible, all server operations convert numeric values into
symbolic ones. To achieve that, the dictionaries representing enum values conversions
are stored into RemoteServer class object during the initial XDR parsing. These dic-
tionaries are represented by DOMTypes and StatusCodes class variables. During the
evaluation, server operation use #symbolicValueFor: method to convert numeric value
to symbolic one.

In addition, separate tests covering features of SessionStorage, NetReadStream and
asynchronous upload/download jobs have been written.

6.2.2 Client side - Check

(FIXME)

6.3 Performance measures

(TODO: compare running time of directly called ops to remotely called ops)

Chapter 7

Conclusion

Blah, blah, blah. I really enjoyed this work.

43

44 CHAPTER 7. CONCLUSION

Bibliography

[1] CellStore project web-site.
http://cellstore.felk.cvut.cz/.

[2] David Ungar and Randall B. Smith. Self: The power of simplicity. In OOPSLA

'87: Conference proceedings on Object-oriented programming systems, languages

and applications, pages 227�242, New York, NY, USA, 1987. ACM.

[3] XML:DB Initiative for XML Databases.
http://xmldb-org.sourceforge.net/.

[4] eXist - Database Deployment.
http://exist-db.org/.

[5] RFC 1831 - RPC: Remote Procedure Call Protocol Speci�cation Version 2.
http://tools.ietf.org/html/rfc1831.

[6] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-

cepts and Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1994.

[7] RFC 4506 - XDR: External Data Representation Standard.
http://tools.ietf.org/html/rfc1831.

[8] Dave Marshall: Remote Procedure Calls (RPC).
http://www.cs.cf.ac.uk/Dave/C/node33.html.

[9] SunRPC Remote Procedure Call Implementation.
http://www.exept.de:8080/doc/online/english/programming/TOP.html

[10] Check: A unit testing framework for C.
http://check.sourceforge.net/.

45

46 BIBLIOGRAPHY

Appendix A

List of used abbreviations

ACK Acknowledgment

API Application Programming Interface

DOM Document Object Model

EoF End of File

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

MIME Multipurpose Internet Mail Extensions

NFS Network File System

OODB Object-Oriented DataBase

ONC RPC Open Network Computing Remote Procedure Call

RPC Remote Procedure Call

SMTP Simple Mail Transport Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

XDR eXternal Data Representation

XML eXtensible Markup Language

XMLDB XML DataBase

47

48 APPENDIX A. LIST OF USED ABBREVIATIONS

Appendix B

Installation instructions

Following chapter gives detailed information about installing of CellStore with remote
access ability and compiling client library.

B.1 CellStore installing

The way described bellow is the simplest one from many various options. Currently,
it's recommended.

1. Download and install Smalltalk/X with Subversion support enabled. Use down-
load page at http://smalltalk.felk.cvut.cz/. There is either Debian reposi-
tory setting information or tarball with whole Smalltalk/X installation. Although
CellStore and remote server should work on Windows systems, they've been pri-
marily tested on GNU/Linux. Therefore using of Linux machine is recommended.

2. Ensure you have Subversion installed on your system. Simply type svn command
and see whether it runs.

3. Run Smalltalk/X and assemble new image.

4. Load CellStore, RPC Service and others from Subversion repository. Evaluate
following code in Workspace.

Smalltalk loadPackage: 'cvut:fel/cellstore/service_rpc'

Package location is mapped into subversion repository so service_rpc package and
its dependencies (including CellStore core) will be downloaded into your image.

5. Create your database instance and register RPC service. Then startup services.
You can either use RemoteServerWizard class (see chapter 5.1.9) or evaluate code
similar to following.

|instance|

instance := DatabaseInstanceBuilder buildOnDirectory:'.'.

CellStore::RPCService new registerTo:instance.

instance startServices.

49

50 APPENDIX B. INSTALLATION INSTRUCTIONS

First command will create new database instance. Second one registers RPC
service to created database instance. Third one invokes services startup.

6. Now you can access database with your libcellstore-based programs.

7. You can also access data from database console. Simply evaluate

(CellStore::DatabaseConsoleV2 new)

open;

fileMenuOpen:instance.

B.2 Client library compiling

Library is provided as source code. It has Make�le with several targets which can be
used.

• client (default) - Compiles testing client. Currently it's a sandbox for implement-
ing new features only and has no speci�c functionality.

• debug - Compiles testing client with debugging symbols and messages. Note this
option does not make di�erent targets so before compiling a debug target after
non-debug version (and vice versa), use make clean command �rst.

• lib - Compiles library and places it into dist/ subdirectory together with header
�les needed to compile library-based applications. You can use this directory
content as distribution package.

• install - Installs compiled library to system. Copies shared library from dist/ sub-
directory into /usr/local/lib and required headers into /usr/local/include

This action requires root privileges.

• uninstall - Remote library from system. Also needs root privileges.

• check - Run tests on local database, need check [10] library installed on your
system. Note that tests are destructive, so do not have important data in database
before running these tests.

• clean - Removes all non-source data (object �les and other binaries).

Distribution also contains Doxy�le so you can generate library documentation, if
not present, using Doxygen.

(FIXME: sync this information to current make�le, remove targets run, demo)

B.3. DEMO APPLICATIONS 51

B.3 Demo applications

Few demo applications have been made to illustrate some of libcellstore features. You
can �nd them in demo/ source subdirectory. Current distribution contains three ap-
plications. Make�le provided with this demo applications compiles them with shared
library in dist/ subdirectory. To run these applications, you have to have libcellstore.so
installed or LD_LIBRARY_PATH environment variable de�ned. Alternatively, you can use
run.sh script which sets this environment variable automatically before run. Usage is
simple. Simply add ./run.sh pre�x before command you want to run.

./run.sh xquery xmldb://localhost "doc('xmldb:authors2.xml')//surname"

Applications provided are (names correspond with Make�le targets):

• xquery - performs XQuery query on given collection. It recursively creates all
collections in URI it they're not exist.

• xmlupload - uploads new XML resource into given collection.

• xmldblist - lists content of given collection as a tree.

Few examples of usage together with their output are shown on �gure B.1.

52 APPENDIX B. INSTALLATION INSTRUCTIONS

$./xmlupload xmldb://localhost/test/ books.xml < books.xml

Moving to child collection: test

Resource uploaded successfully: books.xml

$./xquery xmldb://localhost/test/ "doc('xmldb:books.xml')//title"

<title lang="eng" withPictures="yes">

Harry Potter

</title>

<title lang="eng">

Learning XML

</title>

<title>

1984

</title>

$./xmldblist xmldb://localhost/

Listing XMLDB collection [root] at xmldb://localhost/

root/

test/

test2/

- books.xml [XML]

- books.xml [XML]

bookstore/

- bookstore-1.xml [XML]

- bookstore-1-expensive.xq [XQ]

- bookstore-1-expensive-titles.xq [XQ]

- authors2.xml [XML]

$

Figure B.1: Demo applications: sample output

Appendix C

How to implement protocol

(TODO: this section will be deleted soon)

There are two ways how to get CellStore client-server protocol working with your
favorite platform.

1. Use given XDR speci�cation and other protocol description to write your own
library. Use information from chapter 4 as reference. Several implementations
for di�erent languages exist. During a short search, I found following:

• Remote Tea, pure Java implementation of ONC RPC.
http://remotetea.sourceforge.net/.

• rpcc - Python ONC RPC Compiler, together with demo RPC implementa-
tion seem usable.
http://www.cs.umd.edu/~gaburici/rpc/ and
http://svn.python.org/view/python/trunk/Demo/rpc/

•

2. Link libcellstore library to your platform. Many platforms, including Python,
PHP, some Smalltalk implementations, allow programmers to write their own
interfaces to linkable libraries.

53

54 APPENDIX C. HOW TO IMPLEMENT PROTOCOL

Appendix D

CD content

Nothing yet

55

	Introduction
	Analysis
	CellStore description
	XMLDB interface
	DOM interface
	SELF interface

	Existing object & XML database engines and their interfaces
	eXist
	GemStone/S - GemBuilder for C

	Choosing the network data representation
	Text-based protocol and data representation
	Binary protocol
	Remote Procedure Call
	Conclusion

	RPC programming in C and Smalltalk/X
	XDR description
	RPC in C - rpcgen
	Server
	Client
	Building and running

	RPC in Smalltalk/X
	Server
	Client
	Various Smalltalk/X RPC patches

	Other languages

	Protocol
	Mapping object world to non-objected language
	Handling the objects remotely
	Exceptions

	Message & control flow
	Single-call operations
	Multi-call operations

	Large file transfer
	Data transfer

	Realization
	Server side - Smalltalk/X
	Multi-threaded RPC server - RPCMTServer class
	Server core - RemoteServer class
	Session object holder - SessionStorage class
	EnhancedSessionStorage class
	Large files transfer - SocketJob class
	Special read stream - NetReadStream class
	Example - XML import
	CellStore service - RPCService class
	Remote server launcher - RemoteServerWizard class

	Client side - C library
	API guidelines
	Library structure

	Sample Smalltalk/X client

	Testing
	Unit testing tools
	Smalltalk/X - SUnit
	C Language - Check library

	Test coverage
	Server side - Smalltalk/X
	Client side - Check

	Performance measures

	Conclusion
	Bibliography
	List of used abbreviations
	Installation instructions
	CellStore installing
	Client library compiling
	Demo applications

	How to implement protocol
	CD content

